当前位置:主页 > 电脑基础 > 基础知识

第二节 算术运算和逻辑运算

时间:2010-08-18 | 栏目:基础知识 | 点击:

第二节 算术运算和逻辑运算

一、二进制的算术运算

1、加法运算规则:
   0+0=0   0+1=1  1+0=1 1+1=10

2、减法运算规则:
   0-0=0  0-1=1(向高位借1) 1-0=1 1-1=0

3、乘法运算规则:
   0×0=0  0×1=0  1×0=0  1×1=1

二、逻辑运算

1、基本运算
   ① 逻辑乘,也称“与”运算,运算符为“·”或“∧”
      0·0=0  0·1=0  1·0=0  1·1=1
      使用逻辑变量时,A·B可以写成AB
   ② 逻辑加,也乘“或”运算,运算符为“+”或“∨”
      0+0=0   0+1=1  1+0=1 1+1=1
   ③ 逻辑非,也称“反”运算,运算符是在逻辑值或变量符号上加“—”
       0 = 1   1 = 0

2、常用运算
   异或运算:AB = A·BA·B

2、基本公式

   ① 0,1律
      A·0=0
      A·1=A
      A+0=A
      A+1=1

   ② 交换律
      A+B=B+A
      A·B=B·A

   ③ 结合律
      A+B+C =(A+B)+C = A+(B+C)
      A·B·C =(A·B)·C = A·(B·C)

   ④ 分配律
      A·(B+C)= A·B + A·C

   ⑤ 重叠律
      A+A+...+A = A
      A·A·...·A = A

   ⑥ 互补律
      A + A = 1      A·A = 0

   ⑦ 吸收律
      A+A·B = A       A·(A+B) = A
      A+A·B = A+B      A·(A+B) = A·B

   ⑧ 对合律
      对一个逻辑变量两次取反仍是它本身

   ⑨ 德·摩根定理
      A+B = A·B
      A·B = AB

三、逻辑代数的应用
1、逻辑表达式化简
   例如: F = A·B+A·B+A·B 
          =A·B+A(B+B)    
(利用分配律)
          =A·B+A            
(利用互补律以及0,1律)
           = A+
B               (利用吸收律)

2、对指定位进行运算,假设变量A有八位,内容是d7d6d5d4d3d2d1d0
   ① 将变量A的d5位清零
      A·(11011111)→A
   ② 将变量A的各位置1
      A+(11111111)→A
 

您可能感兴趣的文章:

相关文章